Фредгольма уравнение - definitie. Wat is Фредгольма уравнение
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Wat (wie) is Фредгольма уравнение - definitie

Интегральное уравнение Фредгольма второго рода; Интегральное уравнение Фредгольма первого рода; Уравнение Фредгольма; Фредгольма уравнение

Фредгольма уравнение         

интегральные уравнения вида:

, (1)

ax, sb, (Ф. у. 1-го рода) и

, (2)

ax, sb,

(Ф. у. 2-го рода), где К (х, s) - заданная непрерывная функция от x и s, называемая ядром уравнения, f (x) - заданная функция, φ(х) - искомая функция, λ - параметр (см. Интегральные уравнения). Уравнения (1) и (2) были изучены в 1900-1903 Э. Фредгольмом. Теория Ф. у. 2-го рода проще и они чаще используются в приложениях. Построение устойчивых решений Ф. у. 1-го рода в общем случае возможно лишь с помощью специальных регуляризирующих алгоритмов решения некорректно поставленных задач. Если λ не является собственным значением (См. Собственные значения) уравнения (2), то это уравнение имеет единственное непрерывное решение, определяемое формулой:

, (3)

где R (x, s; λ) = D (x, s, λ)/D (λ) называется резольвентой (См. Резольвента) уравнения (2). Здесь

,

d0(x, s) = K (x, s),

,

,

, .

Лит.: см. при ст. Интегральные уравнения.

Интегральное уравнение Фредгольма         
Интегральное уравнение Фре́дгольма — интегральное уравнение, ядром которого является ядро Фредгольма. Названо по имени шведского математика Ивара Фредгольма. Со временем исследование уравнения Фредгольма выросло в самостоятельный раздел функционального анализа — теорию Фредгольма, которая изучает ядра Фредгольма и операторы Фредгольма.
Уравнение непрерывности         
  • Фрагмент мемуара Д’Аламбера [http://gidropraktikum.narod.ru/equations-of-hydrodynamics.htm#continuity-equation «Essai d’une nouvelle théorie de la résistance des fluides»] (1752, относится к 1749), содержащий уравнение неразрывности для стационарного осесимметрического течения сжимаемой жидкости (<math>\delta</math> — плотность, <math>p</math>, <math>q</math> — компоненты скорости в цилиндрической системе координат)
ЛОКАЛЬНАЯ ФОРМА ЗАКОНОВ СОХРАНЕНИЯ
Уравнение неразрывности; Неразрывности уравнение; Уравнение несжимаемости; Уравнение неразрывности течения
Уравне́ния непреры́вности — (сильная) локальная форма законов сохранения. Ниже приведены примеры уравнений непрерывности, которые выражают одинаковую идею непрерывного изменения некоторой величины.

Wikipedia

Интегральное уравнение Фредгольма

Интегральное уравнение Фре́дгольма — интегральное уравнение, ядром которого является ядро Фредгольма. Названо по имени шведского математика Ивара Фредгольма. Со временем исследование уравнения Фредгольма выросло в самостоятельный раздел функционального анализа — теорию Фредгольма, которая изучает ядра Фредгольма и операторы Фредгольма.